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A B S T R A C T   

Deep learning (DL) is one of the branches of artificial intelligence that has seen exponential growth in recent 
years. The scientific community has focused its attention on DL due to its versatility, high performance, high 
generalization capacity, and multidisciplinary uses, among many other qualities. In addition, a large amount of 
medical data and the development of more powerful computers has also fostered an interest in this area. This 
paper presents an overview of current deep learning methods, starting from the most straightforward concept but 
accompanied by the mathematical models that are behind the functionality of this type of intelligence. In the first 
instance, the fundamental concept of artificial neural networks is introduced, progressively covering convolu-
tional structures, recurrent networks, attention models, up to the current structure known as the Transformer. 
Secondly, all the basic concepts involved in training and other common elements in the design of the archi-
tectures are introduced. Thirdly, some of the key elements in modern networks for medical image classification 
and segmentation are shown. Subsequently, a review of some applications realized in the last years is shown, 
where the main features related to DL are highlighted. Finally, the perspectives and future expectations of deep 
learning are presented.   

1. Introduction 

The concept of artificial intelligence is not new; great geniuses such 
as Leonardo Da Vinci tried to create automatons that emulated human 
tasks [1]. Today it seems that this is already a reality. We are getting 
closer and closer to the singularity mentioned by Nicolas de Condorcet 
[2], established as the hypothetical advent of vital artificial intelligence, 
where new bits of intelligence could recursively self-improve, triggering 
exponential growth of artificial intelligence [3]. Although few intelli-
gent systems are currently self-adjusting, we have seen exponential 
growth in artificial intelligence, especially in medical informatics [4]. 
The growing developments are primarily due to the paradigm shift to-
wards deep learning (DL) systems, being attractive to most researchers 
due to the current models’ efficiency and “simplicity.” In fact, for most 
implementations, it is sufficient to view DL systems as a black box to 
which we provide input and output data as a reference for the desired 
training (supervised learning) [5]. 

The central concept of current artificial intelligence systems is arti-
ficial neural networks [6]. The network consists of many individual units 

(artificial neuron or perceptron), emulating the activation state of the 
biological neuron from the inputs interacting with it [7]. Like a bio-
logical neural network, neurons modify the connections between them 
through the training process in the artificial neural network [8]. 
Although the connection is not deactivated or activated, in the strict 
sense of the word, the connection weights are modified until the desired 
task is achieved [8]. The training is performed by one of the funda-
mental algorithms of the DL, known as backpropagation, which de-
termines the error imputed to each neuron, allowing to adjust the 
network parameters efficiently [9]. The complexity of the network al-
lows it to manipulate a large amount of data to solve problems like the 
human brain. In addition, deep learning approaches have succeeded in 
clustering neural layers in hierarchical order to tackle more challenging 
problems without extracting features or defining a hypothesis about the 
data of interest [10]. The advantages of DL stand out immediately, and 
developments are not made to wait, showing its high performance in 
tasks such as segmentation, classification, detection, pattern search, 
natural language processing, and prognostics, among an extensive list of 
tasks [11–13]. 
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The interest in DL is visualized in the frequent calls, challenges, 
conferences, or all the research groups worldwide presenting their re-
sults [14]. New developments are continuously published, and the 
various contributions make the current models more and more efficient 
[15]. In addition, the generation of large amounts of digital data, robust 
computational infrastructures, graphics processing units (GPU), and 
cloud computing have also fostered the growth of DL in various scientific 
fields, where medicine is no exception to this rule [16,17]. For example, 
the large amount of data used in cancer diagnosis has enabled the effi-
cient integration of DL algorithms [18]. Generally, intelligence learns to 
classify clinical, radiological, or pathological images into a preset cate-
gory [19]. In general, this requires training based on pathological fea-
tures extracted by expert personnel, allowing to address problems as 
complex as the degree of severity [20], the type (malignant or benign) 
[21,22], a specific diagnosis [23] and even the probability of survival of 
a patient [24]. 

In the case of cancer, the implications of possible successful imple-
mentations are evident. Having diagnostic aid systems would help in the 
tasks of the radiologist or expert professional and reduce diagnostic time 
or even lead to more accurate diagnoses and timely treatment [[25],26]. 
In addition, this would have a substantial impact on public health since 
cancer is the second leading cause of death worldwide, responsible for 
9.6 million deaths, according to figures from the World Health Organi-
zation (WHO) [27]. For example, referencing some cases, breast cancer 
is the leading cause of death among women aged 20–50 years and, ac-
cording to 2019 figures from the American Cancer Society, in the United 
States alone, there were an estimated 268,600 new cases of invasive 
breast cancer, 48,100 of ductal carcinoma in situ (DCIS) and 41,740 
deaths [28,29]. The figures reached 684,996 deaths worldwide by 2020, 
making it the leading cause of female cancer mortality [30,31]. Even at 
the beginning of 2021, the WHO reported this pathology as the most 
common cancer worldwide, surpassing lung cancer [32] and repre-
senting only 10.4% of cancers worldwide. Likewise, lung cancer is one of 
the most aggressive pathologies, generating about 22% of deaths, i.e., it 
is one of the leading causes of death from cancer [27]. Figures reveal 
that, in the United States, about 135 thousand deaths were estimated in 
2020, with about 228 thousand new cases diagnosed [33]. In general, 
lung cancer has a very high mortality rate, where 90% of patients do not 
have a life expectancy of more than five years, and about half of them 
have advanced or metastatic cancer [34]. Similarly, brain tumors cause 
severe damage to the nervous system, generating reduced survival rates 
(less than 21% at five years in people older than 40 years [35]). 
Fortunately, the scientific and medical community are increasing their 
efforts to reduce these figures from different areas of research, where 
artificial intelligence would not be needed. Moreover, with the 
advancement of different image acquisition systems, current images 
have much higher resolutions than a few decades ago [36]. Conse-
quently, we have only just begun to take full advantage of the related 
advantages in diagnostic aid systems through artificial intelligence, or 
more specifically, through deep learning. 

Deep learning applications on medical images are recent. In fact, the 
turning point dates back to 2012 (less than a decade), where neural 
networks started to outperform conventional computer vision methods. 
The ImageNet Large Scale Visual Recognition Challenge was the main 
event that showed the advantages of these new strategies [37]. Since 
that point, DL research in medical imaging has increased exponentially 
[4]. Currently, new investigations with faster, deeper, and more efficient 
networks are emerging. In this sense, the scientific community inter-
ested in this area should be updated and aware of the fundamental 
concepts and the most recent developments, as shown by the most recent 
and relevant reviews [38,39]. In this order of ideas, in this review, we 
address two significant challenges. The first one is to clarify the details 
and concepts of deep learning, including the main mathematical models 
behind the operation of the networks, and to deliver an intuitive 
description of the concepts along with the current state-of-the-art net-
works. Secondly, we perform a rigorous review of the most recent 

developments, focusing mainly on medical imaging and deep learning 
oriented to cancer pathologies. This review highlights significant 
themes, research questions or observations, future projections, and po-
tential research areas that have not yet been covered. 

In particular, DL is versatile and straightforward from a black-box 
point of view. However, there are many concepts involved ranging 
from design to training and implementation of the models, being 
necessary to understand them clearly to get the most out of AI. In this 
sense and approach to address the challenges above, this paper focuses 
on showing the key elements, the different architectures, and the most 
recent implementations in medical imaging. The paper is organized as 
follows: Section 2 introduces the basic idea behind artificial neural 
networks. Section 3 shows one of the first neural networks, known as a 
multilayer perceptron or fully connected network. Section 4 deals with 
convolutional neural networks developed for image processing. Section 
5 presents recurrent networks designed for time-dependent data. Section 
6 outlines the intuition behind attention models, a concept essential to 
understanding the Transformers discussed in section 7. Section 8 shows 
all the basic concepts related to artificial neural networks. Subsequently, 
in Section 9, we provide an overview of current neural networks, 
concluding with medical imaging and its applications in section 10 and 
ending with perspectives and future expectations in section 11. 

2. Artificial neural networks 

Artificial neural networks (ANNs) are one of the first bio-inspired 
systems based on the functioning of the human brain. In principle, the 
complexity of the brain is governed by the millions of neurons and 
trillions of connections that make up the brain structure. However, 
functioning is the result of the contribution of each neuron. Neurons 
receive electrochemical signals from other neurons or signals generated 
from the different tissues that make up all our senses, such as vision. The 
signals are processed by each neuron and depending on the interactions 
with the other neurons, the action potential can be reached, polarizing 
the neuron’s axon, and allowing the transmission of the electrical signal 
to continue (synapse). In artificial neural networks, the perceptron is the 
main element of the network, also known as the base unit or artificial 
neuron. Similarly, the perceptron is connected to other perceptrons, 
receiving information from them to produce the activation of the neuron 
through a mathematical element known as the activation function (see 
Section 8.6). Thus, the different activations propagate through the 
network generating the response to the task of interest. Likewise, the 
task results from the contribution of all the neurons that compose the 
artificial network, where most of them are governed by the simple model 
of Equation (1). 

y= f (b+α(xi)) (1) 

In this model, f is the activation function (nonlinear function), b a 
constant, and α a function with the training weights or parameters [40]. 

In the simplest version, it is possible to understand ANNs as black 
boxes with hidden training parameters, which can be trained or learned 
similarly as the human brain does, i.e., the artificial network also needs 
to learn, a process it performs through many examples (supervised 
learning) [41]. Once the model or network is adequately trained, it can 
generate automatic responses in new examples, as conceptualized in 
Fig. 1. 

3. Multilayer perceptron or fully connected networks 

There are many artificial neural network types, with the multilayer 
perceptron or fully connected network being the simplest version. The 
network consists of a layered structure created by an input layer, an 
output layer, and one or more hidden layers. Each layer comprises 
several units interconnected with neighboring layers (input and output) 
but without connections between the units of the same layer. In general, 
the network layers consist only of several units known as artificial 
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neurons or, in this case, perceptron. As mentioned in the previous sec-
tion, the base unit or perceptron resembles the biological model of the 
neuron. The perceptron sums the input values, multiplied by the weights 
representing the synaptic interactions of the biological neurons. The 
weights are known as training parameters and are adjusted later in the 
training of the network. Finally, the weighted sum is introduced to the 
activation function (nonlinear function), simulating the activation, or 
generating the output of each perceptron (see Fig. 2). Despite the small 
number of elements that make up the multilayer perceptron structure, 
the architecture can be designed with infinite configurations since there 
is no limit1 to the perceptrons per layer and layers per network [40]. 

The simple perceptron model can cover to a robust and complex 
mathematical model in proportion to many layers and perceptrons per 
layer. For example, given the vector of inputs x = [x1, x2, x3,…, xn]∀ xi ∈

R one can write the output y1 of the first perceptron as given in Equation 
(2). 

y1(x,w1, b1)= f

(

b1 +
∑4

i=1
w1ixi

)

(2)  

Where w1 = [w11,w12,w13,…,w1n] and b1 are the training parameters 
and f the activation function. Equation (2) can also be written as a 
composition of the inner product or dot product as in Equation (3). 

y1(x,w1)= f (b1 +w1
tx) (3)  

Here, the super index t represents the transpose of the vector. Further-
more, if x and w1 are rewritten as in Equations (4) and (5), Equation (3) 
would take the form expressed in Equation (6). 

x= [x0, x1, x2, x3,…, xn]x0 = 1 (4)  

w1 = [b1,w11,w12,w13,…,w1n] (5)  

y1(x,w1)= f (w1
tx) (6) 

Since the perceptrons are similar, the output of each of them can be 
written as shown in Equation (7) through (10). 

y2(x,w2)= f (w2
tx) (7)  

y3(x,w3)= f (w3
tx) (8)  

y4(x,w4)= f (w4
tx) (9)  

⋮  

ym(x,wm)= f (wm
tx) (10) 

Therefore, if the outputs are organized vectorially, the first layer 
would be governed by the mathematical Equation (11) or its equivalent 
(12) to include the term associated with the bias. 

y= [y1, y2, y3,…, ym] (11)  

y= [y0, y1, y2, y3,…, ym], y0 = 1 (12) 

On the other hand, if all perceptrons in the first layer have the same 
activation function, it is possible to further reduce the mathematical 
model by ordering the m parameter vectors in the matrix (13). 

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 … 0
b1 w11 w12 w13 … w1n
b2 w21 w22 w23 … w2n
b3 w31 w32 w33 … w3n
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
bm wm1 wm2 wm3 … wmn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13) 

Consequently, the output for the first layer would take the form 
shown in Equation (14). 

y= f (Wx) (14) 

Since the network layers are similar, Equation (14) can be 

Fig. 1. Artificial intelligence is represented as black boxes—an example of supervised learning.  

1 Except for the limitations generated by computational resources. 
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generalized for any hidden layer, as shown in Equation (15). 

y(l) = f (l)
(
W(l)y(l− 1)) (15)  

Where, y(l) represents the output for the l-th hidden layer, W(l) and f (l)
the training parameters (weights) and activation function for the same 
layer and y(l− 1) the input of the current layer (output of the previous 
layer), i.e., as the process is repeated for all layers, the output generated 
would be the input of the next layer. It should be noted that the 
sequentiality of the MLP model applies to all types of artificial neural 
networks [42]. 

4. Convolutional neural networks 

Much of the growth of DL is mainly due to the advances made in 

computer vision. In fact, one of the most widely used algorithms in this 
field is convolution, from which the convolutional neural network 
(CNN) is derived, a system inspired by the primary visual cortex. The 
network could decipher or learn the most complex patterns existing in a 
set of images, and it does so by employing convolution. Fundamentally, 
convolution consists of a two-function operator, the image and the filter 
or kernel. The function takes part of the image and highlights patterns by 
multiplying each point of the image fragment with the filter elements. 
The result is weighted, and the generated values are placed in the po-
sition corresponding to the image fragment. The process is repeated by 
moving the filter across the entire image, creating an image with high-
lighted features that depend on the filter structure. 

In the case of CNN, the convolution is performed in the same way. 
The images generated by the convolution are known as feature maps. In 
addition, the bias to each map element is included here, and each map is 

Fig. 2. Artificial neural perceptron and multilayer perceptron.  

Fig. 3. a) Description of a two-layer convolutional neural network with 2 and 3 filters, respectively. b) compact representation of the same network.  
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subjected to the activation function, fulfilling the description of Equa-
tion (1). In this context, the training parameters of the network are the 
weights associated with all filters, i.e., the network learns the optimal 
filters to highlight the high-level features that converge to the desired 
task. The process is repeated layer after layer creating increasingly ab-
stract features. In addition, the CNN architecture can also be imple-
mented with other types of networks, such as fully connected or 
attention models (see section 6). 

Fig. 3 shows the graphical description of the convolution process 
where the input image generates one or more feature maps depending 
on the number of filters for that layer, i.e., if the network has two filters 
in the first layer, then two feature maps would be generated in the 
output. Similarly, each layer can have any filter size and number of 
strides desired. The stride is the number of hops in which the filter 
moves along the network. It should be noted that each filter generates a 
new feature map independent of the number of input maps. However, 
the filter depth changes to match the number of maps, as illustrated in 
Fig. 3. 

It should be clarified that, although Fig. 3a is a more descriptive 
graph, generally, the convolutional network schemes are presented as in 
Fig. 3b, limited only to the size, number, and strides of the filter. 

The convolution process in the CNN layers is governed under the 
following mathematical expression (16). 

A1 = f

(
∑M

i=1
Xi * Ki1 + b1

)

(16)  

Where, for M feature maps, * represents the convolution between the i-th 
map Xi and the filter Ki1 at the map equivalent depth. Again, in this case, 
b1 and f are the bias and the activation function, respectively. Similarly, 
following similar reasoning as in the previous section, each feature map 
generated by the j-th kernel in the l-th layer of the network is governed 
by the following mathematical expression (17). 

A(l)
j = f (l)

(
∑M(l− 1)

i=1
A(l− 1)

i * K(l)
ij + b(l)

j

)

(17) 

Additionally, the mathematical sequentiality described in the MLP 
can also be implemented in this architecture, where for each given layer, 
its input is the output of the previous layer [43–45]. 

5. Recurrent neural network 

Recurrent neural networks (RNN) are networks with feed-forward 
loops capable of preserving sequential characteristics, i.e., they can 
deal with problems with time dependence. The main applications are 
focused on translations (text sequence), audios, and videos, among the 
most frequent problems. In medicine, they can be temporal signals 
associated with the study of a pathology, such as electromyographic 
signals or longitudinal records to study the evolution of the pathology. 
RNNs can store information from previous data through hidden states 
and, together with the current input, the output associated with that 
sequence is calculated. RNNs could be considered to ‘memorize’ the 
preliminary information to arrive at the desired prediction in practice. 
The information is driven through the different layers, converging on the 
output associated with the task’s performance, such as prediction or 
classification. RNNs follow the same principles as MLP and CNN net-
works, while the only difference is that the network’s output will depend 
on initial values, as shown below. 

Following the first definition of a neural network model, the math-
ematical model for an RNN at time t can be formalized as shown in 
Equation (18). 

yt = f (xtwxh + yt− 1whh + bh) (18) 

Equation (18) is similar to the first definition of neural networks (see 
Equation (1)), but this one has an additional term that is associated with 

the output of a previous time (yt− 1). The term is known as the hidden 
state and is usually denoted as ht− 1. Similarly, the terms Wxh, Whh, and bh 

are the training parameters, i.e., the weights and biases of the model. f is 
the activation function. In addition, as it is customary to work with 
several observations, Equation (18) is usually expressed matrixial as in 
Equation (19). 

Ht =φ(XtWxh +Ht− 1Whh + bh) (19) 

Again, the network layers are formed by the grouping of several 
neurons, as illustrated in Fig. 4, where, unlike Fig. 2, this network does 
have connections between neurons in the same layer. 

The design with time dependence usually delivers accurate results; 
however, there are two main problems. The first is that most sequential 
data do not have a fixed size. For example, electroencephalography 
could have a 2-min record at a sampling rate of 5 kHz or a 10-min record 
at the same sampling rate. Secondly, having many hidden states for 
several previous steps could overwhelm the network’s capacity and even 
generate instability in the model weights due to the effect known as 
vanishing gradient. In this sense, several solutions have been proposed 
to deal with this drawback, being the gated recurrent unit (GRU) and 
long short-term memory (LSTM) the most common ones [46,47]. 

Unlike the conventional recurrent neuron, GRUs are designed to 
control hidden state activation, i.e., they consider the relevance of the 
previous state to update or restore that state. For example, if the first 
piece of data is of high importance, the unit learns not to update the 
hidden state after this piece of data. Similarly, the unit learns to omit 
irrelevant observations or to restore the latent state. The neuron has 
three gates to perform this process, generated from the input, namely the 
reset gate, the update gate, and the hidden state candidate (see Fig. 5). 

The reset gate allows controlling how much of the previous state is 
remembered to generate a candidate hidden state, while the update gate 
controls how much of the state is just a copy of the previous one, 
generating the hidden state based on the candidate state. The hidden 
state Ht is expressed mathematically by Equation (20). 

Ht =Zt ⊙Ht− 1 +(1 − Zt) ⊙ H̃t (20)  

Zt is the update gate, and H̃t the candidate hidden state, governed by 
Equations (21) and (22). 

Zt =φ(XtWxz +Ht− 1Whz + bz) (21)  

H̃t = tanh(XtWxh +(Rt ⊙Ht− 1)Whh + bh) (22) 

Here, Rt is the reset gate described by Equation (23). 

Rt =φ(XtWxr +Ht− 1Whr + br) (23) 

Like the previous models, the W′ s and b′ s terms present the training 
parameters associated with each gate. Xt is the input for a given time t, 
Ht− 1 the previous hidden state, ⨀ is the Hadamard product or product 
by elements, and φ the activation function [48,49]. 

LSTMs have similar behavior to GRUs and are slightly more complex 
even though they predate GRUs. The LSTM has four gates; the first 
combines the previous hidden state, the input, and the previous memory 
(Ct) to produce the new hidden state, called the output gate. The second 
(input gate) decides the activation state of the candidate memory. The 
third is a system for restoring the contents of the cell (forget gate). 
Finally, a gate is needed to generate a memory candidate, considered 
another hidden state of the neuron (see Fig. 6). 

Like GRU, the output of each gate is governed by the current input, 
the previous hidden state, and the training parameters, as shown in 
Equations (24)–(27). The equations describe the forget gate, input gate, 
memory candidate, and output, respectively. 

Ft =φ
(
XtWxf +Ht− 1Whf + bf

)
(24)  

It =φ(XtWxi +Ht− 1Whi + bi) (25) 

A. Anaya-Isaza et al.                                                                                                                                                                                                                           



Informatics in Medicine Unlocked 26 (2021) 100723

6

C̃t = tanh(XtWxc +Ht− 1Whc + bc) (26)  

Ot =φ(XtWxo +Ht− 1Who + bo) (27) 

Then, the memory Ct and the hidden state Ht the neuron outputs 

expressed by Equations (28) and (29), respectively. 

Ct =Ft ⊙ Ct− 1 + It ⊙ C̃t (28)  

Ht =Ot ⊙ tanh(Ct) (29) 

Fig. 4. Neural layer with four simple recurrent artificial neurons.  

Fig. 5. Calculation of the hidden state in a closed recurrent unit (GRU).  

Fig. 6. Recurrent network with long short-term memory or LSTM.  
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Again, in Equation (24) through (29), the terms W′ s and b′ s present 
the training parameters associated with each gate. Xt is the input for a 
given time t, Ht− 1 the previous hidden state, ⨀ is the Hadamard product 
or product by elements and φ the activation function [50]. 

6. Attention models 

The attention mechanism is another of the bio-inspired systems. The 
principle of attention models is based on the optic nerve of the visual 
system. The eye’s retina receives a large amount of information from the 
environment, which would far exceed the human brain’s capacity. 
Fortunately, not all perceived information has the same degree of 
importance. The brain focuses its attention on objects of interest. For 
example, as a survival mechanism for humans, the brain has evolved to 
focus attention on potentially dangerous items, such as the eyes of a 
predator. Even now, while you are reading this text, your attention is 
focused on the message conveyed by the text, ignoring the other ele-
ments surrounding it. 

In artificial intelligence, this concept has led to the development of 
attention mechanisms. If you have a large amount of information, why 
not concentrate on the relevant information? In fact, this is an intuition 
that jumps out at you. For example, in magnetic resonance imaging, the 
image is square shaped with the axial slice of the brain in the center, 
implying a quantity of information associated with the background 
(irrelevant information). Following these premises, scientists have 
developed several attention mechanisms, where even convolutional or 
recurrent networks have been dispensed with. 

The attention mechanism is easy to understand when we associate it 
with everyday human tasks, as indicated at the beginning of this section. 
However, from a mathematical point of view, it is necessary to have a 
little more rigor in the implementation. One of the simplest cases of 
models is predictions for a single variable. For example, suppose a data 
set x and y belonging to the reals. For each observation x, there is a single 
output y. In this sense, if one wishes to know a new output for a specific 
x, one could average all ys outputs to generate such a prediction (see 
Fig. 7a). The solution would result in a single value for any new 
observation and would not be very efficient. Instead, following the 
principle of attention models, one could pay more attention to outputs 
close to the queried value, i.e., assign weights to the output as a function 
of the distance to the queried point. The general form of the above can be 
expressed by Equation (30) [51], [52]. 

ŷ =
∑n

i=0
α(x, xi)yi (30) 

Equation (30) is the most generalized form of the attention mecha-
nisms, where xi and yi are called the key-value pairs of the n observa-
tions, x the query, and α the attention weights. This solution was 
proposed by Nadaraya-Watson, generally known as kernel regression, 
and the original version is shown in Equation (31). 

ŷ =

[
∑n

j=0
K
(
x − xj

)
]− 1

∑n

i=0
K(x − xi)yi (31)  

Where K consists of a Gaussian kernel given by Equation (32). 

K(u)=
1̅̅
̅̅̅

2π
√ e− u2

2 (32) 

A clear example of this implementation can be seen in Fig. 7a, where 
for data set varying from 0 to 7, values are a function of that set (blue 
dots). The observations are a partial description of the model that cal-
culates a new observation or query value. For example, a query of 5.6 in 
the Nadaraya-Watson model with a Gaussian kernel would generate the 
distribution of weights displayed in the cyan curve. Values close to the 
query would have more weight in the weighted sum to predict the new 
value. In other words, attention is being paid to values close to the query 
[51]. 

The framework for AI attention mechanisms can be established using 
this same model, as illustrated in Fig. 7b. In this context, the network has 
keys and an attention score function that generates the values biased 
towards the query of interest. The values are subjected to an activation 
function f , which would establish the relevance or contribution of each 
value in the final output sum. Again, the scoring function would be 
related to the training parameters of the model, which would be 
adjusted to generate the distribution of weights that optimizes the 
desired task. 

As expected, there is no single function of attention scores a(q, k). 
However, the two most used functions are: additive attention and scaled 
product attention. The former is governed by Equation (33). 

a(q, k)=Wv tanh
(
Wqq+Wkk

)
(33) 

The scaled product attention is described by Equation (34) and is the 
central concept of the new networks called Transformers, presented in 
the next section. 

a(q, k)= softmax
(

qk
̅̅̅
d

√

)

v (34) 

Being in Equations (33) and (34), q the query, k the keys, v the values 
and the Ws the training parameters [53]. 

Fig. 7. a) Visualization of the weights in a Gaussian attention model for a query (x-value). b) Calculation of the output of the attention model based on the weighted 
average of values. 
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7. Transformers – attention is all YOU need 

So far, fully connected neural networks, convolutional, recurrent, 
and attention models have been presented. However, as of 2017, with 
the famous article “Attention is all you need” published by Vaswani et al. 
[54], the way of thinking about attention models changed, giving rise to 
what is now known as Transformers. In essence, Transformers still retain 
the same intuitions of attention models but dispense with convolutional 
and recurrent networks. 

At first, approximation of the Transformer can be somewhat intim-
idating due to the many elements that constitute it and all the mathe-
matical models behind each element. In addition, the terminology used 
in this model makes it even more disturbing; however, once the step-by- 
step is understood, the Transformer is quite friendly and a powerful tool 
in artificial intelligence. Fig. 8 shows the general structure of the 
Transformer, consisting of an encoder and a decoder. The encoder, in 
turn, consists of several stacks with four sublayers, where the multi-head 
attention layer is the fundamental basis of the model. 

Initially, the architecture receives an input which is usually a 
sequence of text. The text is divided into tokens (a process known as 
tokenization) and then represented as vectors to be used by the model. 
The process is known as embedding, and each token is represented 
through a vector of a size predefined by the developer, usually based on 
the maximum size that a token could have (see Fig. 8e). Subsequently, 
the embedding is passed through a positional encoding, the main dif-
ference with recurrent models. In the recurrent models, the order of the 
words is essential to perform the model’s prediction since a word in one 
position or another can change the context of the sentence. However, the 
order is unnecessary for the Transformer case because the word position 
is being included through positional coding, avoiding generating and 
storing the hidden states of the recurrent networks. The positional 
encoding (PE) proposed by Vaswani et al. [54] is quite simple. It assigns 
sine or cosine values depending on the position (pos in Equations (35) 
and (36)) of the token and each element of the embedding vector. The 
generated values (see Fig. 8d) are added to each element of the 
embedding. The assignments with the sine function are made for the 
even elements (see Equation (35)) and the cosines for the odd ones (see 
Equation (36)). In addition, the argument of the trigonometric functions 
is regulated by an angular frequency (wi) that depends on each element 
(i) of the embedded vectors of dimensions dmodel (see Equation (37)). 

PE(pos,2i) = sin(wi * pos) (35)  

PE(pos,2i+1) = cos(wi * pos) (36)  

wi =
1

10000
2i

dmodel

(37) 

The intuition behind this encoding is to preserve word order, i.e., the 
given assignment could be equivalent to a successive assignment of 
numbers. However, the assignment through trigonometric functions is 
more computationally efficient since it can take advantage of the deci-
mal values generated by the float data. Additionally, it would allow the 
model to learn relative positions because a fixed displacement can be 
presented as a linear function of the positional encoding [54]. 

Having understood the positional encoding, one can now move on to 
“attention is all you need.” The model presented above gives us a basis 
for how the Transformer works. Simplistically, self-attention generates 
the keys, queries, and values from the input data, creating for each input 
a corresponding weighted output generated from the outputs to the 
previous states of the signal (recurrence). The Transformer uses this 
same concept of self-attenuation, generating the keys, queries, and 
values from the input. However, the main difference is that it does not 
depend on the previous states because it is implicit in the positional 
encoding. Therefore, it is possible to use a single attention model or, 
alternatively, to use multiple attention models in parallel. The use of 
multiple models is known as multi-Head attention. In other words, for 

each input embedding vector, three weight matrices generate the keys, 
queries, and values in each header. For example, let be an embedding 
vector x ∈ Rd, where d is the dimension of the model, then the queries, 
keys, and values are given by Equations (38)–(40). 

Qi = xWq
i Wq

i ∈ Rd×dq (38)  

Ki = xWk
i Wk

i ∈ Rd×dk (39)  

Vi = xWv
i Wv

i ∈ Rd×dv (40) 

dq, dk, and dv are the columns of the matrices for the i-th header, 
which have the same value. 

The above is shown in Fig. 8b and corresponds to the outputs 
generated by the linear blocks. After this step, the process becomes a bit 
simpler, the scalar product between the query and key matrices (Qi⋅KT

i ) 
is performed, scaled (division by 

̅̅̅̅̅
dk

√
), passed through the softmax 

function, and finally, this value is multiplied with the vector of values in 
order to obtain the attention score, which is shown in Fig. 8c and 
expressed by Equation (41). 

Headi = softmax
(

Qi⋅KT
i̅̅̅̅̅

dk
√

)

Vi (41) 

The process is repeated for each header and concatenated to generate 
the output of the first sublayer (see Fig. 8c). The operation is represented 
by Equation (42). 

MultiHead =Concatenation(Head1,Head2,…,Headh)Wo (42)  

Where, Wo ∈ Rdkh×d is the matrix of the linear operation shown in Fig. 8b 
and h is the number of headers of each of the N stacks. 

8. Concepts of artificial neural networks 

The previous section showed the different types of artificial neural 
networks, all of which have some standard parameters called parame-
ters and hyperparameters. The parameters are all the variables involved 
in the different models that can be learned through training, i.e., the 
parameters are the model’s weights. Hyperparameters are different el-
ements that can be changed but are not learned; they can be manually 
selected based on criteria specific to the problem at hand [55]. For 
example, the size of the observations (called batch) can be varied at 
one’s own choice. However, a large batch size will require a higher 
memory capacity, and a small one requires a higher number of iterations 
to train the model, i.e., it would need more training time [56]. In the 
following, we address all the key elements related to artificial neural 
networks. 

8.1. Loss function 

In the previous section, we intuitively and mathematically described 
the behavior of artificial neural networks; however, we took for granted 
the value of the training parameters w. Each neural network can have 
hundreds, thousands, or millions of training parameters (depending on 
the depth), being necessary to search for the optimal values to reach the 
network’s best performance. This process is best accomplished by 
determining a measure of model fitness. The loss function quantifies the 
distance between the actual and predicted values. In general, the loss is a 
positive number where smaller values generate better predictions or, 
failing that, achieve perfect prediction by reaching zero, provided the 
model is not overfitted. One of the most common loss functions in 
regression problems is the squared error or mean square error. Suppose 
that for the ​ i-th observation, the actual value yI is matched by the 
prediction ŷI, generating the squared error given by Equation (43). 

l(Θ)
1
2
=

(

ŷi(x,Θ) − yi

)2

(43) 
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Fig. 8. a) General structure of the Transformer with its main elements. b) Multi-Head attention block. c) Scalar product based on the self-attention model. d) Positional coding generated for 25 inputs (words) and an 
embedding length of 512 features. e) Tokenization and embedding of the inputs. 
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Here, ŷI is a function of the input x and the training parameters θ. 
Furthermore, assuming n observations, the error of the whole set is 
obtained by averaging the individual contributions, as shown in Equa-
tion (44). 

J(Θ)=
1
n
∑n

i=1

1
2

(

ŷi(x,Θ) − yi

)2

(44) 

Although the quadratic error is one of the earliest loss functions, its 
use is more widely extended to regression models since many loss 
functions have more remarkable properties in segmentation or classifi-
cation problems [57]. The following section shows five modern loss 
functions used on different types of applications in artificial intelligence. 

8.2. Types of loss functions 

The loss function is one of the fundamental elements to train the 
model efficiently. Therefore, the choice between one or another function 
could generate significant differences in the network’s performance. For 
example, many applications focus on classification; however, using the 
mean square error would generate false performances if one element is 
higher than the others. The network would learn to classify all items like 
the one with the highest frequency and, if that item corresponds to 90% 
of data, the network will arrive at the same score even if all items are 
classified in a single class. Similarly, the segmentation task consists of 
classifying pixels into different elements, usually associated with the 
background and the object of interest (e.g., brain tumor). The difference 
between the regions spanned by the elements (data imbalance) usually 
causes the networks to be biased towards the more significant element. 
Therefore, it is necessary to select the loss function that considers such 
data imbalance [57]. In the following section, five of the most used loss 
functions are shown. 

8.2.1. Binary cross-entropy 
The binary cross-entropy is one of the most used loss functions in 

bimodal problems. Precisely, the function measures the difference be-
tween two probability distributions, calculating the entropy associated 
with each class or element. The principle can be applied to images, 
where each pixel is considered one of two distribution elements (e.g., 
background and tissue of interest) [58]. The function is highly efficient 
in training models. However, it is susceptible to class imbalance, so it is 
not recommended to use it in such cases. The binary cross-entropy (LBCE) 
is mathematically defined as shown in Equation (45). 

LBCE(y, ŷ)= − (y log(ŷ)+ (1 − y)log(1 − ŷ)) (45)  

Where, y is the actual data set andŷ is the predicted set. 

8.2.2. Weighted binary cross-entropy 
As in the previous case, weighted binary cross-entropy is used to 

measure the difference between two distributions. However, these 
variant weights the ensembles, allowing the bias of data unbalance to be 
removed [59]. The weighted binary cross-entropy is defined mathe-
matically, as shown in Equation (46). 

LWBcE(y, ŷ)= − (βylog(ŷ)+ (1 − y)log(1 − ŷ)) (46) 

Here, y is the actual data set, andŷ is the predicted set, and β is the 
weighting coefficient, used to adjust for false positives or false negatives. 

8.2.3. Dice loss 
Dice coefficient is a statistic used to calculate the similarity between 

two samples. Its use can be extended towards images by comparing the 
similarity between spatially matching pixels [60]. The coefficient has 
also been included as a loss function and is mathematically defined, as 
shown in Equation (47). 

DL(y, ŷ)= 1 −
2yŷ + 1

y + ŷ + 1
(47)  

Where, y is the actual data set and ŷ is the predicted set. It should be 
noted that Equation (47) is modified with a 1 in the numerator and 
denominator, ensuring that the function is defined even in the extreme 
cases where y and ŷ are equal to zero. 

8.2.4. Tversky loss 
The Tversky index is a measure of asymmetric similarity between 

sets [61]. This function can be viewed as a generalization of Dice’s co-
efficient, expressed mathematically, as shown in Equation (48). 

TI(y, ŷ)=
yŷ

yŷ + β(1 − y)ŷ + (1 − β)y(1 − ŷ)
(48) 

Equation (47) weights the false positives and false negatives weights 
through the coefficient β. Like the Dice coefficient, the Tversky index 
can also be fitted to a loss function, as shown in Equation (49) [62]. 

TL= 1 − TI (49) 

The loss function can be modified toward a focal loss by reducing the 
weights of individual examples and focusing the training on hard neg-
atives through a modulation factor γ [63], as shown in Equation (50). 

FTL=
∑

C
(1 − TIC)

γ (50) 

Here, the modulation factor must meet the condition of γ > 0. 

8.2.5. Log-cosh dice loss 
The Dice coefficient is widely used in computer vision on conven-

tional images. However, due to its non-convex nature, the smoothed 
version using a hyperbolic log-cosine has recently been proposed [64]. 
The loss function is mathematically defined as in Equation (51). 

LDL = log(cosh(DL)) (51) 

Here, DL is the loss with the Dice coefficient set in Equation (46). 
At this point, we have two fundamental elements in deep learning. 

The first one is the different network types and the loss functions that 
mainly establish the amount of error generated. In addition, each model 
that was described in the previous section was left as a function of 
training parameters known as weights and biases (W′ s and b′ s), i.e., 
given any artificial neural network, there is a set of training parameters 
Θ that can be adjusted to optimize the desired task. So, the doubts are: 
what are the optimal values for my task, and how do I calculate them? 
Currently, an algorithm is used to obtain the training parameters; 
however, in this section, we will describe the analytical solution to the 
backpropagation algorithm to give a clearer intuition of the training of 
the networks. 

8.3. Analytical solution 

Suppose that for an artificial network, one has the predicted output 
andŷi associated with the i-th observation of the vector of inputs xi ∈ Rn. 
Furthermore, assuming a mean square error as a loss function, the total 
error generated would be given by the contribution of each of the ob-
servations as given in Equation (52). 

J(w)=
1
n

∑n

i=1

1
2

(

ŷi(xi,w) − yi

)2

(52) 

Now, from Equation (1), the general form of the output is known. 
However, if a linear activation function is assumed, the output would 
take Equation (53). 

ŷi(xi,w)= xiw (53) 

Therefore, by arranging Equation (52) in a matrix form, one has the 
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expression of Equation (54). 

J(w)=
1
2n

(Xw − y)T
(Xw − y) (54) 

As mentioned above, Equation (54) provides the error generated by 
the model, i.e., the lower the value given by this function, the better the 
network’s performance. In this context, we would be dealing with a 
classical optimization problem. Therefore, one could derive Equation 
(54) concerning w and equal to zero to find the minima of that function 
as given in Equation (55). 

dJ(w)
dw

=
1

2n
d

dw
(
(Xw − y)T

(Xw − y)
)
= 0 (55) 

After a series of mathematical operations (see Appendix B), the so-
lution given by expression (56) would be reached [65]. 

w=
(
XT X

)− 1XT y (56)  

8.4. Solution by numerical methods (gradient descent) 

Although the analytical method seems to be the fastest solution, this 
is usually not the case. The above solution is based on many assumptions 
and, although these can be met, finding the inverse of a matrix is not an 
easy process, especially in artificial neural networks, where there are 
many features and observations. However, there are more unique so-
lutions, such as stochastic gradient descent (SGD). The intuition behind 
SGD is quite simple and consists of reducing the loss iteratively until a 
minimum is reached, as shown in expression (57). 

Θτ+1 =Θτ − η∇J(Θτ) (57) 

To understand in more detail, assume a loss function with a single 
training parameter w (See Fig. 9a). If a random value of w is initially 
selected, the loss function will probably have a high value. On the other 
hand, at that same selected point, the derivative would be calculated, 
which would indicate whether the function has a positive or negative 
slope, i.e., whether it is increasing or decreasing. Therefore, the initial 
value could be reduced by a fraction of the derivative to obtain a new 
value of w that generates a lower loss. The process would be repeated 
iteratively until the lowest possible value of the loss function is obtained, 
as shown in the general pseudocode in Fig. 9b. The process applies to 
multivariate problems where only the derivative would be exchanged 
for the partial derivative related to each training parameter [66]. 

In the case of a single variable, the loss function has a concave shape 
and a single minimum (global minimum). Therefore, the gradient can 
reach the lowest possible cost. However, it should be clarified that most 
loss functions do not have this behavior and, therefore, the gradient 
could reach a local minimum, limiting the model’s performance. 

8.5. Back propagation 

Although the gradient descent is very useful for finding the optimal 
model parameters, the implementation still requires a large amount of 
computation to propagate the error through the model. However, this is 
significantly reduced through the backpropagation technique. Back-
propagation refers to the method of calculating the gradient of the 
neural network parameters. In short, the method traverses the network 
in reverse order, from the output layer to the input layer, according to 
the chain rule of differential calculus. The algorithm stores the inter-
mediate variables (partial derivatives) needed when calculating the 
gradient for the parameters. Due to the sequential nature of the neural 
networks, each layer can be expressed in terms of the previous layer, as 
shown in Equation (58). 

y(l) = f (l)
(
W(l)y(l− 1)) (58) 

In this sense, if Equation (57) is replaced in terms of the input and 
training parameters, the l-th output would be expressed as in Equation 
(59). 

y(l) = f (l)
(
W(l)f (l− 1)(W(l− 1)f (l− 2)(W(l− 2)…f (1)

(
W(1)x

)
…
)))

(59) 

Equation (59) could be replaced over the loss function (see Equation 
(54)) to obtain the W′ sweight matrices’ gradient. For example, for a 
network with n layers, the mathematical equation will give the gradient 
concerning the weights of the second to the last layer (60). Where, this 
term is known as the error imputed to that layer [9]. 

∂L
∂Wn− 2

=
1
m

∑m

i=1

(
ŷ(i)

− y(i)
) ∂gn

∂an
⋅
∂gn− 1

∂an− 1
⋅
∂gn− 2

∂an− 2
⋅ Wn ⋅ Wn− 1⋅yn− 3 (60) 

For practical purposes, Equation (59) indicates the amount of error 
associated with the weight matrices, facilitating the adjustment of the 
parameters through the gradient descent (see section 8.4) [9]. 

Fig. 9. a) description of gradient descent for a single training parameter. b) general pseudocode used in gradient descent algorithm.  
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8.6. Activation function 

As mentioned above, artificial neural networks emulate the biolog-
ical neuron, and one of the key elements to replicate the operation is the 
activation function. This is usually constituted by a nonlinear relation-
ship between the weighted input and the output of the neuron. The 
activation functions can have a different mathematical structure where 
the most common are the sigmoid, the hyperbolic tangent, the rectified 
linear unit (ReLu), and the softmax function. The mathematical struc-
ture of the functions is designed to “separate” values that are generally 
very close, allowing to generate a more differentiable space between 
values. For example, Fig. 10 shows the behavior of the hyperbolic 
tangent activation function, where the output presents a more consid-
erable difference for the difference of the inputs. 

It should be noted that the choice of the activation function is a 
hyper-parameter that affects the performance of the networks in 
different ways, i.e., the activation function may generate better results in 
some networks [67]. 

8.7. Pooling 

In convolutional networks, small changes in the input image 
generate small changes in the feature maps. Therefore, pooling layers 
were devised to solve this problem, giving some transitional invariance 
to the models. Pooling operations are like convolutional layers, i.e., 
these layers generate a single value for a window that scrolls across the 
image (see Fig. 11). The window can have different sizes, stride, and 
pooling as the average (AveragePooling) or maximum value (max-
Pooling). In addition to this, the pooling allows reducing the size of the 
feature maps, simplifying the model, and reducing the computational 
load [68,69]. 

8.8. Dropout regularization 

A drawback present in artificial neural networks is overfitting or 
overtraining. When training a model with a limited number of data or 
over many epochs, it “memorizes” the data with which it is being 
trained. That is, the accuracy of the model during training may be 
excellent, but when tested with another data set, the accuracy drops 
drastically. So, regularization by abandonment was devised to solve this 
problem. The technique eliminates random neurons for each training 
batch, generating slightly different networks, where the model would 
adjust to these multiple network variations [70]. 

8.9. Batch normalization 

Batch normalization was devised to mitigate the problem of chang-
ing internal co-variants, this being a limitation in the learning rate 
generated by the initialization of parameters and changes in the distri-
bution of inputs to each layer. The change of co-variants is a shift in the 
internal distribution within each feature map. Normalization adjusts 
that shift by modifying the distribution toward a mean of 0 and a 
standard deviation of 1, using Equation (61). Subsequently, the 
normalization is adjusted through training to an optimal distribution by 
means of a linear transformation, as shown in equation (62). The pa-
rameters γ and β (learned parameters) modify the standard deviation 
and bias of the new distribution, improving the performance of DL 
models [71]. The normalization process also smooths the gradient flow 
and acts as a regularization layer [72]. Therefore, some architectures 
using batch normalization do not typically use dropout. 

y
′(k)
Ni =

y(k)i − μ(k)
B̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ(k)
B )

2
+ ε

√ (61)  

y(k)Ni = γ⋅y
′(k)
Ni + β (62) 

Here, y
′ (k)
Ni represents the normalized feature map of the k-th layer, 

y(k)
Ni is the optimal distribution for the same layer, y(k)

i the unnormalized 
input, μ(k)

B and σ(k)
B represent the batch mean and variance respectively 

and ε is a stabilization coefficient used to avoid division by zero. 

8.10. Evaluation metrics 

Several metrics have been designed to quantitatively describe 
network behavior as an essential part of an objective validation of 
network performance. The metrics compare the results obtained with 
the actual results, generating scores proportional to the effectiveness of 
each model. Generally, scores can range from 0 to 100%, or their frac-
tional form from 0 to 1, where 0 indicates zero performance and 1 or 
100% indicates perfect performance. Like loss functions, there are many 
evaluation metrics, and even some metrics are used as loss functions, but 
complementary version towards 1, i.e., of the form (1-metric). In 
Table 1, we show the most used evaluation functions for the case of 
binary problems. 

Most metrics are defined in terms of true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN), as illustrated in 
Fig. 12a. 

All metrics range from 0 to 1 except for the Hausdorff distance (HD), 
ranging from 0 to ∞. The metric takes the immense value between the 
farthest distance from one curve to the nearest point of the other and 
vice versa (see Equation (74)). Fig. 12b illustrates this principle between 
two curves. In this context, the coefficient tends to zero when the curves 
are entirely equal and increase as the curves differ [79]. 

9. Building of modern blocks 

As deeper networks are designed, it becomes imperative to under-
stand how adding layers can increase the complexity and generaliz-
ability of the network. To understand the complexity of modern 
networks, in the next section, we give an intuitive description of net-
works and the mathematical model that governs the model’s behavior. 

9.1. AlexNet 

Although the implementation of convolutional neural networks 
became known from developments by LeCun et al., it was not until the 
AlexNet network won the “ImageNet Large Scale Visual Recognition 
Challenge 2012′′ that the computer vision paradigm was changed. The 
network demonstrated that features obtained through deep learning Fig. 10. Hyperbolic tangent activation function.  
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could outperform manually designed features [80]. The network does 
not differ much from the network developed by LeCun, which is 
composed of convolutional layers, pooling layers, and fully connected 
layers (see Fig. 13). Eight layers mainly constitute AlexNet, five con-
volutional and three fully connected (or MLP) layers governed by the 
mathematical models described in the previous sections [80]. 

The input image advances through the different convolutional layers 
generating a more significant number of feature maps but smaller due to 
the pooling layers. The output of the last convolutional layer is flattened 
and passed to the fully connected layers. The flattening process consists 
of taking the feature matrices and converting them into vectors. Finally, 
the last part of the network takes the abstract feature vectors to propa-
gate them through the perceptrons, generating the prediction values 
associated with each class. 

9.2. VGG19 

The VGG19 network is like the AlexNet architecture, with sequential 
convolutional layers with increasing filters as you go deeper into the 
network. The model has 16 convolutional layers, three fully connected, 
and five pooling layers based on the maximum pooling method with 2 ×
2 windows (see Fig. 14). The architecture motivated the use of smaller 
filters since the perceptual field was shown to be just as efficient as with 
larger filters. In addition, the smaller filter size also reduces the number 
of training parameters [81]. 

Fig. 11. Pooling for five feature maps reduced by half.  

Table 1 
Disclosure metrics most used in deep learning.  

Name Equation  

Accuracy [73] ACC =
TP + TN

TP + TN + FP + FN  
(63) 

F1 score [74] F1 =
2TP

2TP + FP + FN  
(64) 

Sensitivity or Recall [74,75] SE =
TP

TP + FN  
(65) 

Specificity [73,75] SP =
TN

TN + FP  
(66) 

Precision or positive predictive value 
[74,75] 

PR = PPV =
TP

TP + FP  
(67) 

Negative predictive value [75] NPV =
TN

TN + FN  
(68) 

False positives rate [73] FPR =
FP

FP + TN
= 1 − SP  (69) 

Area under the ROC Curve [74] AUC = AUC(SE, FPR) = 1 −

SE + FPR
2  

(70) 

Conformity [76] CF = 1 −

incorrectly classified voxels
TP  

(71) 

Jaccard index or the Intersection over 
Union [77] 

JD = IoU =
TP

TP + FP + FN  
(72) 

Dice coefficient [60] DSC =
2TP

2TP + FP + FN
=

2JD
1 + JD  

(73) 

Hausdorff Distance [78] HD = max{h(A,B), h(B,A)}
h(A,B) = max

a∈A
min
b∈B

a − b  
(74) 
(75)  

Fig. 12. a) illustrates a segmentation problem with all the elements that compose the overlap between the actual and predicted segmentation. b) Example of the 
calculation of the Hausdorff distance for two segmentation product curves. 
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9.3. GoogleLeNet (inception) 

Most designs are based on sequentially stacking layer after layer, 
hoping to achieve better performance by extracting a more significant 
number of features. However, designing in this way presents two main 
problems. The first one is that too many training parameters will lead to 
an overfitting of the model and the second drawback is that the model 
also becomes difficult to train because it depends on the back-
propagation algorithm, i.e., it is dependent on the derivative, which is 
reduced with many convolutional layers. In this sense, to solve this 
drawback, Szegedy et al. proposed a structure that combines network-in- 
network (NiN) blocks and repeated block pooling [82,83]. The blocks 
are called Inception and consist of four parallel convolutional trajec-
tories, as illustrated in Fig. 15b. The first trajectory has only a 1 × 1 
convolutional layer. The second and third trajectories have 1 × 1 con-
volutions followed by 3 × 3 and 5 × 5, respectively. The fourth trajec-
tory consists of a top pooling layer (MaxPooling) and a 1 × 1 
convolution to finally concatenate with all the trajectory outputs. 

The googleLeNet architecture has a series of convolutional layers, 
like the LeNet structure. Subsequently, the sequence is connected with 
nine Inception blocks to generate the estimates (see Fig. 15b). 

9.4. ResNet 

In developing deep learning architectures, it is clear that a more 
significant number of layers allows more abstract features to be 
extracted and, consequently, increasingly complex problems to be 
addressed. However, depth limits network training due to gradient 
fading, i.e., since the gradient propagates backward between different 
layers, repeated multiplication over many layers makes the gradient too 
small. To solve this problem, He et al. introduced the concept of residual 
connection or direct connection (see Fig. 16c) [84]. Essentially, the 

connection creates trajectories parallel to the convolutional layer se-
quences, allowing the gradient to flow through the lattice and pre-
venting it from vanishing. Furthermore, the connection forces the 
network to learn the residual mapping f(x) − x, being easier to train if 
the ideal residual mapping is the identity function f(x) = x (see Fig. 16c) 
[85]. 

The use of residual connections allowed for deeper networks. For 
example, one of the most widely used architectures is the ResNet50, 
consisting of a sequence of 50 convolutional layers as illustrated in 
Fig. 16b. The design interleaves 1x1, 3x3, and 1x1 sized filters in parallel 
with the residual connection. 

9.5. DenseNet 

If a direct connection between a sequence of layers prevents the 
gradient from fading and the network from training faster, a suitable 
assumption would be to expect multiple connections to generate better 
results. This is the assumption devised by Huang et al. that led toward 
the design of densely connected networks [86]. However, although a 
direct connection is the main idea of the DenseNet, the difference with 
ResNets is that the connection is not made by summing the feature maps 
but through concatenation. 

Fig. 17 shows the design of the DenseNet 121 network constructed 
with four densely connected blocks, as shown in Equation (76). In turn, 
each block is made up of 1x1 and 3x3 filter size convolutional layers, 
where the output is concatenated with the previous input. Additionally, 
the network uses transition layers to convolve all feature maps and 
reduce their resolution employing an average pooling layer [87]. 

Y (1)
c6

= concatenation
(

Ymax,Y
(1)
2 ,Y (1)

4

(
Y (1)

c1

)
,Y (1)

6

(
Y (1)

c2

)
,… ,Y (1)

12

(
Y (1)

c5

))

(76) 

Fig. 13. AlexNet convolutional neural network architecture.  

Fig. 14. General structure of the VGG19 network.  
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9.6. EfficientNet 

The EfficientNet is still a convolutional network with stacked layers 
in sequence but implemented with a uniform scaling method. That is, 
while most architectures are designed with arbitrary dimensions, the 
EfficientNet uniformly scales the depth, width, and resolution di-
mensions (see Fig. 18). The intuition behind the method is that if the 
input image is large, then the network should have more layers to in-
crease the receptive fields and more channels to capture the small pat-
terns in the image [88]. 

9.7. U-net 

Most networks described so far are layered or block convolutional 
designs in sequence. Generally, the networks increase the number of 
features they extract through a more significant number of convolu-
tional filters. The generated features are flattened and passed through 
fully connected layers to discriminate between the classes associated 
with each image. The classification task is one of the most used tasks in 
medical imaging. However, another common task is the segmentation of 
regions of interest, such as lesions, tumor tissue, or any type of anomaly. 
Fortunately, for segmentation, there is the U-Net network designed by 
Ronneberger et al. [89]. The design is the fundamental basis of most 
segmentation networks, and this is primarily due to the ingenious 
design, which allows preserving the spatial distribution of the image 
while abstracting image features. The U-Net network consists of two 
main elements: an encoder and a decoder. The encoder takes the input 
image and convolves it, generating increasingly complex feature maps 
as it moves deeper into the network. Additionally, the convolutional 
layers are combined with pooling layers to reduce the size of the maps 
and thereby reduce the computational load. The process is interleaved 
between convolutions and pooling, as illustrated in Fig. 19. 

At the encoder end, the network generates many features but of 

Fig. 17. Densely connected convolutional neural network.  

Fig. 18. Representation of the scaling method. a) reference example, and b) 
network scaled in depth, width, and resolution. The image was taken 
from Ref. [88]. 
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reduced size, which is used to generate the segmentation image. At the 
decoder, the features must be convolved into maps twice the size. 
However, in discrete space, the convolution reduces the image di-
mensions. That is, suppose one has an image of size n× n (with n even) 
and convolves it with a filter of size 2x2 with strides of 2. The result 
would generate an output with half the size as given in Equation (77). 

Outn
2×

n
2
=K2×2*Inn×n (77) 

The convolution of Equation (16) can be represented as a matrix 
operation, converting the matrices to vectors and the filter to the sparse 
version or matrix. The equivalent is shown in Equation (78). 

Out
1×

(
n
2

)2 = In1×n2 K
n2×

(
n
2

)2 (78) 

In this sense, it is possible to multiply by the inverse of the sparse 
matrix on both sides of the equation, generating the result of Equation 
(79). 

Out
1×

(
n
2

)2 K − 1(
n
2

)2

×n2
= In1×n2 (79) 

If the arguments of this result are reversed, that is, if the input image 
is put on the left side and the output image on the right side, then you 
will have an operation equivalent to a convolution but increasing the 
dimensions of the image as initially sought. The process is known as 
transposed convolution or denoted as Up-conv (see Fig. 19), referring to 
an upward convolution. It should be noted that, although Equation (77) 
denotes the inverse of a non-square matrix, the process is not performed 
since the parameters that make up the filter are not known, i.e., the filter 
could be replaced by a matrix with the dimensions transposed to the 

original size and with unknown weights, without having significant 
repercussions since these would be calculated during training. 

After transposed convolution, the result is concatenated with copies 
of the maps before the pooling layers and resubjected to convolutional 
layers, as illustrated in Fig. 19. The process is repeated the same number 
of times as they were clustered through the max pooling function. 

The U-Net is highly efficient in the segmentation process; moreover, 
the convolutional layers can be replaced by the blocks of the networks 
described above. In this sense, when a network block replaces a layer, 
the architecture is said to have a backbone of that network. For example, 
the backbone of the DenseNet network could be used. 

10. Medical imaging and its applications 

The field of medicine is one of the fastest-growing areas and one of 
the most rigorous, as it is directly related to the life and quality of pa-
tients. In this sense, tools have been developed over time to facilitate the 
work of physicians. Developments initially began with small mechanical 
tools such as scalpels, syringes, and even stethoscopes. However, con-
stant research and technological evolution have introduced such novel 
tools as medical imaging. In definition, medical imaging is the set of 
techniques and processes to create images of the human anatomy or its 
functioning. In this sense, today, there are many strategies to generate 
such images. Clear examples of this are: ultrasound, radiography, 
computed axial tomography, magnetic resonance imaging (both func-
tional and structural), positron emission tomography, endoscopy, ther-
mography, external imaging (e.g., of melanomas), microscopy, and 
even, in some cases, recording methods are considered to be images 
since they can produce data that can be represented as information maps 
(e.g., electroencephalography). 

Fig. 19. General architecture of the U-Net network. The figure is the original graph taken from Ref. [89]. Each box represents a set of feature maps. The numbers at 
the bottom represent the feature map sizes, and the numbers at the top represent the number of maps. 
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Although the concept behind medical imaging is simple (describing 
human anatomy), the implementation and interpretation are not. Each 
technique obeys a physical principle and, therefore, an expert profes-
sional is required to interpret the results, or the images generated. 
However, in the tasks of classification, segmentation, prediction, and 
other tasks covered by deep learning, it is only necessary to have clearly 
identified labels, either of the pixels that make up the image or the image 
in general. In other words, with deep learning techniques, it is not 
necessary to know in detail the background of the images -although 
knowing it could help to select the most appropriate architecture or give 
some clues on how to build the new models-. In principle, as discussed in 
the previous sections, DL algorithms automatically take the image and 
extract features until the desired task is reached. In this sense, current DL 
research is focused on investigating, developing, implementing, and 
evaluating the performance of networks in different areas, images, and 
tasks. 

In order to understand the trends in deep learning on medical im-
aging, the most recent research articles up to the second half of the year 
2021 are listed in Table 2. The search was based on two keywords: ‘deep 
learning’ and ‘cancer.’ The focus was taken towards cancer to narrow 
the search to a smaller number of research papers, and only articles that 
used medical imaging in their development were selected. 

The Table includes the name of the principal author with the year of 
publication, and the topic addressed from the deep learning approach, 
the architecture used, the datasets, the main results with the respective 
evaluation metrics (The most common metrics are defined in Section 
8.10), and a section of observations, where the authors’ limitations or 
suggestions for future work are highlighted. It should be clarified those 
only observations directly related to deep learning were taken, i.e., 
protocols or experimental design parameters related to data acquisition 
were not included. 

The results show high variability among the topics addressed by 
artificial intelligence. In essence, every type of cancer that can be 
recorded through a digital image has been subjected to the scrutiny of 
artificial intelligence to perform a task that facilitates or expedites the 
radiologist’s work in charge. Similarly, the network designs presented 
great variety. Although the U-Net remains the base structure for the 
segmentation task, it has been implemented under new blocks or con-
cepts that enhance the network capacity. For example, most U-Net 
networks were implemented with another type of backbone, with the 
ResNets family being the most widely used. In contrast, it is necessary to 
highlight that, although attention models and Transformers are one of 
the most probed topics in recent years, convolutional neural networks 
are still the first choice to work with medical images. In fact, in Table 2, 
only Lal et al. [94] included blocks with attention mechanisms in their 
research. 

On the other hand, a trend is also seen in the type of images. 
Although most of the developments were based on computed tomog-
raphy (CT) images, there were also, to a lesser extent, works based on 
magnetic resonance imaging, ultrasound, and biopsies. The images 
allowed addressing cancer-related problems in the prostate, cervix, 
carcinomas, liver, rectum, colon, gastric, cervical lymphadenopathy, 
gliomas, breast (including microcalcifications), lung, pancreas, and 
liver. In addition, the work not only focused on cancer detection but 
there were also developments in the segmentation of organs at risk for 
treatment with radiotherapy. The latter is vital to determine the exact 
limits of the organs, allowing precise planning of the radiation dose 
required in cancer treatment. 

In the case of architectures, the versatility in network design has 
opened a universe of possibilities that is still uncertain for most scien-
tists. The dependence on data and the constant evolution of image 
acquisition systems further complicates the convergence towards 
definitive AI systems. In particular, the architectures in Table 2 show a 
wide range of designs. Developments range from the classical base U-Net 
to complex blocks with attention mechanisms. For example, only in 
these investigations were found networks with residual connections 

(ResNet), densely connected (DenseNet), recurrent (LSTM or GRU), 
Pyramid Scene Parsing Network (PSPNet), two-dimensional, three- 
dimensional, or composite models or models such as Mark R-CNN, VGG, 
Xception, and DeepLab+. 

As discussed in section 8.10, it is necessary to resort to evaluation 
metrics for an objective evaluation of network performance. In partic-
ular, such metrics describe the performance of the networks against 
their specific task. However, the availability of different metrics, such as 
accuracy or F1 score, does not clearly compare different investigations. 
Although the review found that most of the studies are based on the Dice 
coefficient metric (for segmentation), it was also possible to find metrics 
such as the Jaccard index, Hausdorff, or even not standard metrics such 
as Matthew’s correlation coefficient. It is therefore difficult to create a 
clear comparison between different investigations focused on the same 
problem. Despite these drawbacks, the results are encouraging, even 
reaching perfect values of 100%, as in the case of Adweb et al. [114] and 
Iqbal et al. [113]. 

Finally, it should be clarified that most investigations did not use 
transfer learning except for Salvi [92], Thomas [93], Zhao [96], 
Urushibara [97], Gonzalez [101], Naser [106], and Zhuang [110]. 
Similarly, less than half of the articles implemented data augmentation, 
and even most of these focused on random rotations, leaving aside all 
other existing methods. 

11. Perspectives and future expectations 

The boom in artificial intelligence and especially in deep learning 
systems, is evident. The number of publications that emerge month after 
month is clear evidence of this area’s importance in the scientific field. 
Moreover, the multidisciplinarity of DL has allowed it to compete with 
human performance even in areas as complex as medicine. However, 
while most authors highlight the advantages and findings of deep 
learning, few systems have had validity in the actual clinical setting. The 
limitations surrounding medical imaging can be pretty extensive and 
depend on the particular problem. Nevertheless, although there are 
many limitations in DL, it is possible to highlight some common factors 
that restrict the performance of the models. First, it is evident that the 
networks that generalized well without overfitting was trained with 
many data, i.e., the amount of data is still a fundamental factor in the 
training of networks. On the other hand, while there is currently a large 
amount of medical data and although there are also organizations in 
charge of collecting databases, no data covers all the heterogeneity of 
acquisition protocols or variation between study subjects. For example, 
in the case of MRI alone, images can be acquired with a T1-or T2- 
weighted sequence. Moreover, the resolution can vary significantly from 
one resonator to another depending on the magnetic field used by the 
equipment, which can be 1.5, 3, or even 7 T. Additionally, the constant 
evolution of image acquisition systems limits the construction of 
extensive databases with similar characteristics, further deepening the 
problem of the availability of data that fit the actual context. 

In this order of ideas, it is expected that new developments will be 
focused on more robust networks that need a smaller and smaller 
amount of data for training. In fact, these approaches are already 
considered in current networks, as is the case of residual connections, 
which allow better training of networks with greater depth. In this sense, 
ideally, future approaches may be oriented to outperform current net-
works by making training more efficient and reducing the number of 
reference images for optimal adjustment of network parameters. 

It is more than clear that advances in computer technologies and the 
creation of new repositories encourage sharing medical images. It is 
even possible to find international platforms with multi-center data. 
However, the voracity and consumption of data in deep learning exceeds 
the availability of data and limits the evolution of deep learning. 
Additionally, the technological evolution from medical research and 
practice makes the databases have obsolete images, being necessary a 
faster response for the publication and free distribution of next- 
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Table 2 
Recent research in deep learning and cancer.  

Main author Topic Architecture Data sets (D), results (R) and Observation (O) 

Mohammadi et al., 
2021 [90],a 

Segmentation of organs at risk 
(bladder, rectum, and sigmoid). 

ResU-Net D Imaging of 113 patients with locally advanced cervical cancer. CT 
R DSC 95,7 ± 3,7, 96,6 ± 1,5 and 92,2 ± 3,3%. HD 4.05 ± 5.17, 1.96 

± 2.19 and 3.15 ± 2.03 mm. Average Symmetric Surface Distance 
(ASSD) 1,04 ± 0,97, 0,45 ± 0,09 and 0,79 ± 0,25 for the bladder, 
rectum, and sigmoid, respectively. 

O Uncertainty exists between the boundaries of the OARs contours and 
the training set. The set is based on data from a single center. 
Diversity of cancer type, differences between teams, non- 
homogeneous image acquisition protocols make an objective 
comparison of results difficult. Despite the promising results 
delivered by the metrics, the authors recommend a qualitative 
evaluation by experienced radiation oncologists. 

Nemoto et al., 2020 
[91] 

Semantic segmentation of organs at 
risk for prostate cancer radiotherapy. 

U-Net 2D D 556 CT images. 
R Average DSC 0,85 ± 0,05, 0,94 ± 0,04 y 0,85 ± 0,07 for prostate, 

bladder, and rectum, respectively. 
O The clinical setting is not constant; therefore, each new advance 

requires a large amount of new data. 
Salvi et al., 2021 

[92] 
Segmentation of prostate glands. Rapid IdentificatioN of Glandural 

Structures (RINGS). UNet-based 
model with ResNet34 backbone. 

D Prostate biopsy of 150 male patients. 
R Balanced ACC (0.9325 ± 0.0684), PR (0.8897 ± 0.1359), SE 

(0.9356 ± 0.0964) and DSC (0.9016 ± 0.1087). 
O Uses data from a single center. 

Thomas et al., 2021 
[93] 

Semantic segmentation of the 
different parts of carcinomas and 
classification. 

U-Net with the ResNet50 backBone. D 290 samples of BCC (140), SCC (60) and IEC (90). 
R Segmentation: ACC 85% and 74% (validation and test). 

Classification: ACC 97.9% (test). 
O In surgical margin clearance, the technique depends on the quality 

of segmentation. The limitation could be overcome by adding 
additional information in the deep margin regions, which is only 
found in few training datasets. 

Lal et al., 2021 
[94],a 

Segmentation of histopathological 
images in liver cancer. 

NucleiSegNet: Consisting of residual, 
bottleneck, and decoder blocks with 
attention. 

D 124 histopathological images stained with H&E. 
R Results for two data sets named by the author as KMC and Kurman. 

KMC F1 (83,59) and IoU (72.06%). Kumar F1 (81.363) and IoU 
(68.883%). 

O Extension of this method to the segmentation of multiple tissue 
instances is a possible future work. Obtaining more imaging samples 
and improved pre-probing techniques will be critical for future 
work. 

Choi et al., 2020 
[95],a 

Segmentation of multiple organs in 
breast cancer. 

DenseNet 3D. D 62 breast cancer patients. CT. 
R DSC 0.86 (overall chamber). 
O A single oncologist delineated the contours. The authors recommend 

involving multiple experts in future developments. 
Zhao et al., 2020 

[96] 
Detection and segmentation of lymph 
nodes in rectal cancer. 

Mask R-CNN with Resnet-101 
backbone. 

D 5789 LN from 293 patients with rectal cancer. 
R Detection: SE (80.0), PPV (73.5) and FP/vol (8.6%) in internal 

testing. 
Segmentation: DSC from 0,81 to 0,82. 

O Small lymph node size affects detection and segmentation. 
Therefore, the investigation focused on nodes >3 mm. The set is 
small and was performed by few experts. Therefore, manual 
delineation may have biases. It is recommended to integrate a group 
of experienced radiologists to generate more heterogeneous 
databases. 

Urushibara et al., 
2021 [97] 

Diagnosis of cervical cancer. Xception with transfer learning from 
ImageNet. 

D 418 T2 MRI. 177 subjects with cervical cancer and 241 healthy 
subjects. 

R SE (0.883) SP (0.933) ACC (0.908) and AUC (0.932). 
O Transfer Learning was performed from ImageNet implementations, 

composed of natural images. The transfer may not be adequate as 
different types of images are used. 
The study was based on data from a single center. The authors 
recommend validating with images from other institutions. 
The development was performed only on sagittal T2-weighted MRI. 
However, there are many sequences and planes of visualization. In 
addition, we switched from DICOM to lower-quality JPEGs, which 
may affect the diagnosis. 

Chen et al., 2021 
[98] 

Segmentation of organs at risk for 
radiotherapy. 

Ua-Net (head and neck), 2.5D U-Net 
(thorax) and 3D U-Net (abdomen and 
pelvis). 

D 755 CT of head and neck, thorax, abdomen, and pelvis 
R Average DSCs of 0.84 and 0.81 on in-house and public datasets. HD 

6,39 ± 6.14. 
O Imaging of irrigated organs without any tumor invaded or resected 

by surgery was used. In addition, the study was performed by a 
single expert. 

Rigaud et al., 2021 
[99],a 

Anatomical segmentation of the 
cervix in cervical cancer. 

DeepLabV3 + (Google 2D) and U-Net 
3D. 

D 2 datasets. 408 CT. 
R Average DSC 0.85. Range from 0,77 to 0,90. 
O  

Courot et al., 2021 
[100] 

Segmentation of cervical 
lymphadenopathy. 

U-Net D 117 CT 
R Average DSC 0.63. 
O 

(continued on next page) 
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Table 2 (continued ) 

Main author Topic Architecture Data sets (D), results (R) and Observation (O) 

Limited data with partial annotations. Size variability affects the 
segmentation process and validation metrics, i.e., small items result 
in low Dice scores. 

Gonzalez et al., 
2021 [101],a 

Segmentation of sigmoid colon for 
cervical radiotherapy. 

U-Net with 2D and 3D filters. D Approximately 2000 slices of 50 CT. 
R Average DSC 0.88. 
O Sigmoid colon segmentation is complex even for humans. Therefore, 

segmentations may vary from observer to observer and generate 
variations in scores concerning those observers. 
Small amount of data. 

Zhang et al., 2021 
[102] 

Segmentation of pancreas. Joint network with U-Net 3D and 2D. D Three CT data sets. 36 from ISICDM, 82 NIH, and 281 MSD 
R DSC 84.47+-4.36%. 
O  

Caballo et al., 2020 
[103] 

Segmentation of breast masses. U-Net D 93 mass-like lesions from 69 CT images. 
R DSC (0.93 ± 0.03), SE (0.92 ± 0.03), PR (0,93 ± 0,05) and CF (0,85 

± 0,06). 
O Data augmentation was done through GAN with the same images as 

used for U-Net. This could generate biases due to synthetic images. 
The authors suggest augmenting the databases for future work. 

Balagopal et al., 
2021 [104] 

Segment precise contouring of the 
clinical target volume. 

U-Net, PSPNEt and DeepLab D 340 postoperative prostate cancer patients. CT 
R DSC 0.87. 
O Only images without additional dice were used. Therefore, 

additional information on pathologic conditions would be expected 
to improve model performance. 

Vakanski et al., 
2020 [105],a 

Segmentation of breast tumors in 
ultrasound. 

U-Net with attention blocks. D 510 ultrasound images. 
R DSC 90.5 
O Low quality of prominence maps generated by attention blocks. 

Naser and Deen 
2020 [106] 

Segmentation and classification of 
gliomas. 

U-Net with VGG16 backbone. D 110 MRI. 
R Segmentation: DSC 0.84. Grade II and grade III classification: ACC 

(0.89), SE, (0.87) and SP (0.92). 
O The VGG16 spine was used, a simple model that could limit the 

accuracy of the model. The authors recommend exploring other 
spines such as ResNet50, Inception v3, or DenseNet. 

Ibrahim et al., 2021 
[107] 

Diagnosis of COVID-19, pneumonia, 
lung cancer, and regular images. 

VGG19, ResNet152V2, ResNet152V2 
+ (GRU), and ResNet152V2 +
Bidirectional GRU. 

D X-ray and CT. Covid 19 (4320), pneumonia (5856), Lung cancer 
(20,000), and normal (3500). 

R Model VGG19: ACC (98,05), SE (98,05), PR (98,43), SP (99,5), NPV 
(99,3), F1 (98,24) and MCC (99.66%). 

O The authors recommend using GAN systems for classification and as 
an essential part of data augmentation. 

Wang et al., 2021 
[108] 

Classification of lung 
adenocarcinoma subtypes. 

ResNet-34 D 1222 patients with adenocarcinoma of the lung. CT. 
R 2-category classification: ACC (0.8776). 3-category classification 

ACC (0.8061). 
O The study was based only on patients in the initial stage since it is 

challenging to obtain longitudinal information that allows the 
implementation of DL systems for predicting survival. The authors 
suggest integrating complete information and caution that the 
model may not perform as well at later stages. 

Li et al., 2021 
[109],a 

Predicting the pathologic status of 
suspicious non-palpable breast 
microcalcifications. 

U-Net-Reductive. D 463 digital mammograms from 260 patients. 
R AUC (0.906) and ACC (0.787). 
O The database has few subjects, and a reduced U-Net base model 

could limit the network’s performance. The authors recommend 
experimenting with more architectures 

Zhuang et al., 2021 
[110],a 

Classification of tumors on breast 
ultrasound images. 

VGG, ResNet and Densenet D 1328 breast ultrasound images. 
R ACC (0,9548), PR (0,9811), SP (0,9833), SE (0,9392), F1 (0,9571) 

and AUC (0,9883). 
O  

J. Wang and Liu 
2021 [111],a 

Gastric cancer segmentation. DeepLab v3 + D 1340 images of gastric cancer pathologic sections. 
R SE (91,45), SP (92,31), ACC (95,76) and DSC (91,66%). 
O The results delivered by the algorithm have room for improvement. 

Yan et al., 2021 
[112],a 

Prostate segmentation. PSP Net D 270 MRI 
R ACC (0,9865). 
O The authors note that the model was validated with few samples. 

Iqbal et al., 2021 
[113],a 

Prostate cancer detection. LSTM and ResNet-101 D 230 MRI 
R LSTM: SE (98,33), SP (100), PPV (100), NPV (100), PR (99.48), MCC 

(98.79) and AUC (99.99%). 
ResNet-101: PR (100) and AUC (100%). 

O Despite the excellent results, the data is small. Therefore, the authors 
recommend comparing with larger data sets for future work. 

Adweb et al., 2021 
[114] 

Diagnosis of the uterine cervix. ResNet wiht (Leaky-RELU and 
PRELU) 

D 4000 precancerous and 800 healthy cervical images. 
R Leaky-RELU: ACC (90.2). PRELU: ACC (100%). 
O The work is not directly comparable with previous work because of 

different types of images. 
T. Zhang et al., 

2021 [115] 
Classification of non-solid nodules. CNN 3D SE-ResNet D Images of 240 AIS, 277 MIA and 192 IAC. CT 

R Discrimination AIS from MIA-IAC: ROC (0.820). Discrimination AIS- 
MIA from IAC: ROC (0.833). 

O 

(continued on next page) 
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Table 2 (continued ) 

Main author Topic Architecture Data sets (D), results (R) and Observation (O) 

More samples are required for parameter optimization to reduce 
overfitting. The authors suggest using GANs to generate synthetic 
images in future work. 

Maron et al., 2021 
[116] 

Classification of skin cancer AlexNet, VGG16+BN, ResNet50 and 
DenseNet121. 

D 194 melanoma and 125 nevus images from 85 unique lesions. 
R DenseNet121 was the best network with BE (19.6), mBCE (26.8), 

and mFR (6.3). 
O The latest skin cancer studies lack external data classification 

assessments. 
Cho et al., 2021 

[117],a 
Classification of pulmonary 
abnormalities. 

ResNet-50 D 9534 chest radiographs 
R ACC: 0.9330 in the AMC data and 0.9120 in the SNUBH dataset. 
O Despite the excellent performance of the development, the authors 

recommend including patients with other diseases to evaluate the 
real usefulness of the system. In addition, the authors also highlight 
the need to include more databases, as only CXR images from two 
centers were included in the study. Finally, further studies are still 
needed to increase specificity and improve performance in 
classifying abnormalities. 

(Y. Ma et al., 2021 
[118] 

KRAS mutation status in colorectal 
cancer. 

Network-based on Xception, 
convLSTM, and attention models 

D 3817 T2-weighted MR images from 206 patients. 
R ACC (0.8803), AUC (0.9427) and SP (0.9075). 
O The study was performed with a limited number of data and, 

although the method demonstrated advantages, there is still room 
for improvement in model performance. 

J. Ma et al., 2021 
[119],a 

Classification of benign and 
malignant lesions 

ResNet50 D 200 contrast-enhanced breast cone-beam CT images from 165 
patients. 

R AUC (0.727), SE (0.80) and SP (0.60). 
O The study is based on a small number of images, and the data are 

from a single center. The authors highlight the need for more data to 
perform an objective validation with external data. In addition, they 
also suggest diversifying the data sets. 

El Houby & Yassin, 
2021 [120],a 

Classification of breast lesions CNN conventional D 1231 total mammograms for training 
R INbreast dataset: SE (0.9655), SP (0.9649), ACC (0.9652), and AUC 

(0.98). MIAS dataset: SE (0.98), SP (0.926), ACC (0.953), and AUC 
(0.974). 

O Despite the promising results, the authors point out that more 
accurate systems are needed before implementation in the hospital 
setting. They also mention that more careful experiments are 
needed. In addition, in future work, the authors propose to use them 
with local data. 

Guo et al., 2021 
[121],a 

Segmentation of medical images New hierarchical network (DW- 
HieraSeg) 

D Images of binary polyp, melanoma, and clinically relevant 
anatomies. 

R DSC (88293), JD (0.81690), SE (0.88381), SP (0.99524), ACC 
(0.97474), and F1 (0.88036) 

O  
X. Cao et al., 2021 

[122],a 
Segmentation of breast mass Dilated densely connected U-Net D 170 vol from 107 patients. 

R DSC (0.6902), JD (0.5661) and HD (4.92 mm). 
O The authors emphasize that three-dimensional methods still have 

limitations due to challenges in the computational load of the 
networks. 

R. Zhang & Chung, 
2021 [123],a 

Segmentation of medical images Residual U-Net and 3D-Unet D CT of liver tumors and MRI of brain tumors 
R Liver tumor CTs: DSC (0.7881). Brain tumor MRIs: DSC (0.8339). 
O The models have room for improvement, and the authors 

recommend approaching the problems from parallel programming 
for future work. In this sense, they mention that inference times are 
high, and the current quantification process is still based on iterative 
backpropagation with costly computations. The authors recommend 
that future work investigate the possibility of exploiting the 
potential of advanced discrete optimization methods to assist the 
quantification process further. 

Shi et al., 2021 
[124] 

Segmentation of pulmonary nodules Residual U-Net D 2576 CT images of pulmonary nodules 
R ACC (0.9457) 
O  

Gao & Almekkawy, 
2021 [125] 

Segmentation of liver tumors A nested U-Net (ASU-Net++) D 480 ultrasound images, 253 CTs of the data sets denoted SYSU-CT 
and subCT. 

R Ultrasound images: DSC (0.9153). SYSU-CT: DSC (0.9413) and 
subCT: DSC (0.9246). 

O Small data sets limit the performance of the models, as it becomes 
more difficult to converge the model. 

Z. Yang et al., 2021 
[126],a 

Classification of mass New deep CNN named MommiNet-v2. D 10 312 mammographs from 2578 cases 
R SE (0,898) 
O Data come from only a few collaborators. The authors recommend 

increasing the effort to build larger-scale multicenter datasets. 
Jain et al., 2021 

[127],a 
Segmentation for atherosclerotic 
plaque 

UNet, UNet+, SegNet, SegNet-UNet, 
and SegNet-UNet +

D 970 image frames of ultrasound. 
R The AUC metric for the 5 models was: (0.91), (0.911), (0.908), 

(0.905), and (0.898) 
O  

Classification of Skin lesion D 33126 dermoscopic skin images from 2000 patients 

(continued on next page) 
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Table 2 (continued ) 

Main author Topic Architecture Data sets (D), results (R) and Observation (O) 

Sayed et al., 2021 
[128],a 

SqueezeNet, VGG19, GoogleNet, and 
ResNet50 

R ACC (0.9837), SP (0.9647), SE (1.0), F1 (0.9840), and AUC (0.99). 
O The authors propose to use swarm intelligence algorithms for future 

work and to approach the problem from non-binary classification, i. 
e., classify melanomas into different classes. 

Ben Hamida et al., 
2021 [129],a 

Segmentation analysis of colon cancer AlexNet, vgg − 16, ResNet, DenseNet 
and Inception v3 

D 396 HES stained colorectal histopathological 
R ACC (0.9698) with ResNet 
O The authors highlight the importance of richly annotated datasets 

for tumor segmentation tasks. Additionally, they highlight that 
classical CNN suffers from the problem of vanishing gradients, 
limiting the ability to provide generic representations. One solution 
is to implement the use of large-scale images combined with large 
datasets. However, this would also have drawbacks due to the high 
computational costs involved. 

Ferjaoui et al., 2021 
[130] 

Classification of evolutive lymphoma 
and residual masses. 

ANN D 1005 diffusion-weighted MRI 
R SE (0.964), SP (0.909), ACC (0.955), F1 (0.097), and geometric- 

mean (0.9161). 
O While the results are promising, the authors recommend continuing 

efforts to improve diagnostic accuracy by investigating other 
machine learning or deep learning algorithms. On the other hand, 
the authors emphasize that longitudinal studies (data over time) are 
necessary for an evolutionary pathology follow-up. 

S. Zhang et al., 
2021 [131],a 

Detecting signet ring cells (gastric 
cancer) 

RetinaNet D 455 images from the gastric mucosa 
R Kappa value (0.74) and ACC (0.89) 
O  

Liu et al., 2021 
[132],a 

Prediction of axillary lymph node 
metastasis 

Deformable attention VGG19 D 800 contrast-enhanced computed tomography images 
R ACC (0.9088) 
O The study was only carried out in a single center, making it 

necessary to implement the development in multicenter studies. The 
authors also highlight that the development was performed on 2D 
data, leaving the door open for further studies with 3D networks. 

Churchill et al., 
2021 [133] 

Predicting lymph node metastasis in 
lung cancer 

NeuralSeg D 298 lymph nodes from 140 patients 
R ACC (0.729), SP (0.908), and NPV (0.759) 
O Although the results are promising, the authors highlight the 

importance of future work to evaluate the algorithm in clinical 
trials. 

Kaur et al., 2021 
[134],a 

Sorting for multi-slice computed 
tomography (liver cancer) 

CNN D 63503 CT images of liver cancer 
R ACC: 0.9008 for liver, 0.8997 for lung, and 0.8906 for bone. 
O The work is limited to a single data set. The authors recommend 

training the model and testing it under other sets. In addition, they 
also recommend future work with images of different types of 
cancer. In the same vein, future directions should focus on learning 
the clinical significance and importance of the features learned by 
the networks. On the other hand, the authors highlight that the work 
was performed only on computed tomography images, opening the 
possibility of extending this work to positron emission tomography 
classification. 

Zou et al., 2021 
[135] 

Segmentation Breast Annotation tolerance network (NAT- 
Net) 

D 550 ultrasound images 
R PR (0.872), SE (0.886), JD (0.797) and F1 (0.879) 
O The authors emphasize that the quality of the training data and the 

quantity greatly influence the network performance. However, the 
operational cost of obtaining manually annotated images restricts 
the creation of large datasets, especially in medical imaging. 
Therefore, increased efforts are needed to acquire data quickly and 
make better use of the data. On the other hand, the authors also 
recommend continuing this line of research but with more advanced 
models, seeking better segmentation performance. 

L. Cao et al., 2021 
[136],a 

Detection of abnormal cervical cells Attention feature pyramid network 
(AttFPN) 

D 7030 annotated cervical cytology images 
R SE (0.9583), SP (0.9481), ACC (0.9508) and AUC (0.991) 
O The study only has data from a single center. The authors 

recommend having a higher quality data set from multiple centers to 
evaluate the proposed method thoroughly. Also, the authors point 
out that the data have indeterminate atypical lesions, and it is 
possible to study such lesions in future work. 

C. W. Zhang et al., 
2021 [137] 

Detection of cervical cancer Fine-tuned LSTM-FCN Network D 1395 thinprep cytologic test 
R ACC (0.983), SE (0.981), and SP (0.979) 
O Although the results are encouraging, the authors comment that 

large data sets are needed to increase and ensure the generalizability 
of the networks. Furthermore, they also recommend exploring the 
interpretation of the models in order to illustrate the classification 
principles. Additionally, the authors highlight that future work 
should focus on optimizing model structures. 

B.-L. Chen et al., 
2021 [138] 

Detection of polyp Faster R-CNN D 1000 colonoscopy images 
R PR (0.943), SE (0.925), and F1 (0.934) 
O  

Kurata et al., 2021 
[139],a 

Segmentation of uterine endometrial 
cancer 

U-net D 200 multi-sequence MRIs. 
R DSC (0.806), SE (0.816), and PR (0.834) 
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Table 2 (continued ) 

Main author Topic Architecture Data sets (D), results (R) and Observation (O) 

O The design was based on images from a single scanner. The authors 
emphasize that it is necessary to validate the performance with 
multicenter data to optimize the models. 

Gamble et al., 2021 
[140],a 

Breast cancer biomarker status Inception-V3 D 3274 slides using hematoxylin-and-eosin-stained (H&E) 
R AUC: estrogen receptor (0.86), progesterone receptor (0.75), and 

receptor called HER2 (0.60). 
O For this specific case, the authors highlight that 

immunohistochemistry protocols and interpretation guidelines 
constantly change over time, generating variability between 
historical clinical labels. This would limit the performance of the 
models on datasets with different characteristics. 

Strijbis et al., 2021 
[141],a 

Tumor segmentation in 
retinoblastoma 

Multi-view CNNs D 46 MR imaging from 23 children. 
R DSC: eye (0.965), sclera (0.847), vitreous (0.975), lens (0.909), 

retinal detachment (0.828) and tumor (0.914). 
O The work was performed on a dataset from a single scanner. The 

authors recommend using data from multiple sources for future 
work. Additionally, the study does not address class imbalance or 
loss functions, limiting the model’s effectiveness to the stated 
hyperparameters. The authors also recommend investigating other 
types of topologies in search of better performance. 

Mohammed et al., 
2021 [142],a 

Classification of cancer types 1D-CNN D 2166 tumor samples from five cancers: breast, colon 
adenocarcinoma, ovarian, lung adenocarcinoma, and thyroid 
cancer. 

R Average ACC (0.9922) 
O The study does not consider methods for handling class imbalance, 

with a more significant number of samples likely to affect the 
model’s reliability. 

Schultheiss et al., 
2021 [143],a 

Detection of lung nodule U-Net and RetinaNet D 855 CT images 
R wAFROC FOM (0.81) 
O While the results are promising, the authors note that the most 

significant challenges are in the differences between images, such as 
the higher resolution in the current radiographs. In addition, the 
authors highlight that the simulation does not completely resemble 
the real scenario, with new real data sets needing to be explored. 

M. Wang et al., 
2021 [144] 

Diagnosis of hepatocellular 
carcinoma 

VGG and ResNeXt. D CT images from 7512 patients 
R Internal test set: ACC (0.81), SE (0.784), SP (0.844) and F1 (0.824). 

External test set, ACC (0.813), SE (0.894), SP (0.740) and F1 
(0.819). 

O  
Park et al., 2021 

[145] 
Classification of cervical cancer ResNet50 D 4419 cervicography images. 

R AUC (0.97) 
O The classification presented good results; however, the authors point 

out that not all images were in focus, and some might even be 
distorted or outside the area of interest. This could limit the 
performance of the model. In addition, the authors note that the 
methods were applied under some hyperparameters, and it is likely 
that the results will differ from other hyperparameters. In addition, 
the authors suggest applying data augmentation in future work. 

C.-W. Wang et al., 
2021 [146] 

Detection of HSILs or higher for 
cervical lesion diagnosis. 

U-net and SegNet D 143 whole slide images of conventional Pap smear samples. 
R PR (0.93), SE (0.90), F-measure (0.88), and JD (0.84) 
O  

Silva et al., 2021 
[147],a 

Classification of EGFR mutation 
status for lung cancer 

Convolutional autoencoder and MLP D 2669 lesions from thoracic CT scans of 1010 patients. 
R AUC (0,68) 
O The authors’ comment that more representative data are needed for 

a complete analysis. Additionally, they suggest including other 
strategies such as generative adversarial networks to include 
synthetic samples. 

Saber et al., 2021 
[148],a 

Detection and Classification of Breast 
Cancer 

Inception V3, ResNet50, VGG-16, 
VGG-19, and Inception-V2 ResNet 

D 322 mammographic images. 
R ACC (98.96), SE (97.83), SP (99.13), PR (97.35), F1(97.66), and 

AUC (0.995) 
O  

Kim et al., 2021 
[149] 

Histological Image Segmentation and 
Classification 

PSPNet, U-Net, UNet++, and 
DeepLabV3+ with an entropy-based 
convolutional module. 

D 5000 training images from the whole-slide image. Histological 
colorectal cancer images. 

R F1 (0.855) and JD (0.832) 
O Although the networks gave good results, more studies are needed to 

adjust the hyperparameters of the entropy-based convolutional 
module. 

Ogino et al., 2021 
[150] 

Prostate Cancer Stage Prediction Xception D T2-weighted MR images of 15 patients 
R ACC (0.880) 
O In this particular case of MRI images, the authors highlight some 

limitations for the use of DL. The different modalities (including the 
types of sequences) and the differences in spatial resolution limit the 
applicability of the models, restricting them to a particular type of 
image or to a single task, as in this case, to classification. Despite 
these drawbacks, the authors suggest improving performance by 
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generation images. In this context, artificial intelligence has several 
branches that could complement each other. For example, as mentioned 
above, networks could move towards data-optimized models with little 
data, with more excellent generalization capability, and even ap-
proaches can focus on data augmentation or more realistic artificial 
image generation. 

12. Conclusions 

Deep learning is one of the fastest-growing areas in medical image 
analysis and has had a significant impact on different applications, both 
clinical and research. Developments are not waiting to happen, and new 
results are building a promising future for artificial intelligence, opening 
the way to more accurate segmentation, classifications, detections, and 

predictions even at expert radiologists’ level. Deep learning techniques 
are far surpassing conventional methods in medical image analysis. 
However, there is still a long way to go. In this sense, a general review 
was conducted to integrate the critical points in artificial intelligence, 
specifically on deep learning. The article addresses the basic concepts of 
deep learning from the types of networks, the current and the most 
recent developments made on medical images related to cancer. The 
review yielded some fundamental studies and allowed us to define DL’s 
current problems and establish a perspective of the leading research 
focus. In this context, it is more than evident that, although the current 
research has promising results, the availability of data biases the per-
formance and limits the implementations to a group with its own 
characteristics. In other words, the developments are limited only to 
images like the ones they were trained on. This involves several 

Table 2 (continued ) 

Main author Topic Architecture Data sets (D), results (R) and Observation (O) 

optimizing hyperparameters such as the number of layers, the 
dimensions of each layer, and other network configurations. 

Martins Jarnalo 
et al., 2021 [151] 

Detection of pulmonary nodule DL-CAD D 145 chest CT 
R SE (0.88), FPR (1.04), and NPV (0.95). 
O While the results are promising, the authors stress that they are not 

good enough to replace nodule detection performed by expert 
radiologists. The systems still deliver high rates of overestimation of 
nodule size, leading to possible unnecessary follow-up 
examinations. In this regard, the false-positive rate of the models 
needs to be improved. 

Duran-Lopez et al., 
2021 [152] 

Detection prostate cancer Wide & Deep network D 332 of hematoxylin and eosin-stained slides 
R ACC (0.9424), SE (0.9887), PR (0.9023), F1 (0.9433), and AUC 

(0.94) 
O The authors propose future work to improve the sensitivity and 

reduce the computational time of the models. 
Huang et al., 2021 

[153] 
Segmentation of Cervical Cel Generative Adversarial Networks D 1880 cervical cell images 

R DSC (0.943), object-level FNR (0.79) for single-cell images. DSC 
(0.899), object-level FNR (0.64) for overlapping cell. 

O Although the authors propose future work (such as segmentation of 
cells in blood images), they also highlight those further studies are 
needed to improve the performance and applicability of the 
proposed methods. 

X. Chen et al., 2021 
[154],a 

Segmentation of pancreatic cancer Spiral-ResUNet D 65 apparent diffusion coefficient (ADC), 69 diffusion-weighted 
(DWI), 68 T1-weighted (T1w), and 70 T2-weighted (T2w) MR 
images. 

R DSC (0.656), (0.640), (0.645), and (0.653), in MRI T2w, T1w, ADC, 
and DWI, respectively. 

O  
Dipu, Shohan and 

Salam, 2021 
[155] 

Detection and Classification of Brain 
Tumor 

YOLOv5 and FastAi D 1992 Brain MRI 
R ACC: (0.8595), PR (0.9267), SE (0.8433), F1(0.8830) and, in 

YOLOv5. ACC (0.9578) in FastAi. 
O The authors highlight that the system would provide much better 

results if trained on a more extensive data set over a longer time. 
Shah, 2021 [156],a Classification of skin cancer LRNet D 10015 pigmented lesion images 

R SE (0.94), SP (0.917), PR (0.942), and ACC (0.906) 
O The authors highlight that almost all previously trained networks 

are very dense and therefore overfit when trained on low-resolution 
images. 

Chan, Liu and Chu, 
2021 [157],a 

Localization of lung tumors VGG16 with deep convolutional 
generation confrontation network 

D 11082 images from Pneumothorax 
R ACC (0.82), SE (0.76), SP (0.90), and PR (0.88) 
O While the results are promising, the authors highlight that further 

research is needed to adjust the detection parameters and increase 
the accuracy of the proposed models. 

Wetteland et al., 
2021 [158],a 

Prediction of cancer grade in bladder 
cancer. 

VGG16 D 300 digital whole-slide images from patients diagnosed with non- 
muscle-invasive bladder cancer 

R PR (0.92), SE (0.90), and F1 0.90 by the best model 
O The study is limited to cancer-diagnosed data from a single-center, i. 

e., training material with non-cancerous samples is not available. 
This limits the applicability of the model to this data set. In addition, 
the authors comment that the model’s behavior on lower quality 
data is unknown, and it is possible to study this question in future 
work. 

Saunders et al., 
2021 [159],a 

Segmentation of prostate Optimized U-Net D 60 T2w MR images 
R DSC (0.89) and HD (1.15) 
O The authors propose to include studies for prostate cancer detection 

and diagnosis as future work.  

a Research with data augmentation. 
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solutions, the first and simplest of which is to encourage groups and the 
scientific community to share their databases. The second approach 
focuses on more efficient networks or optimization methods that require 
less data for training. Third, developing new data augmentation 
methods or image synthesis is an open idea for possible future work to 
increase the amount of data available or improve the performance of 
networks with few reference images. Finally, we also highlight those 
current strategies with medical images are approached only with the 
pure image, i.e., patient information that could better have relevance in 
the performance of the models is being omitted. 
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Appendix 

A. Glossary 

AI Artificial Intelligence 
AIS Adenocarcinoma In Situ 
ANN Artificial Neural Network 
ASSD Average Symmetric Surface Distance 
BE Balanced Error 
BCC Basal Cell Carcinoma 
CNN Convolutional Neural Network 
CT Computed Tomography 
DL: Deep learning 
EGFR Epidermal growth factor receptor 
FC Fully Connected 
GAN Generative Adversarial Networks 
GPU Graphics processing unit 
GRU Gated Recurrent Unit 
HSILs High Grade Squamous Intraepithelial Lesions 
IAC Invasive Adenocarcinoma 
IEC IntraEpidermal Carcinoma 
ISICDM The 2nd International Symposium on Image Computing and Digital Medicine. 
KMC Kasturba Medical College 
LN Lymph Nodes 
LSTM Long Shor-Term Memory 
mBCE mean Balanced Corrupted Error 
MCC Matthew’s correlation coefficient 
mFR mean Flip Rate 
MIA Minimally Invasive Adenocarcinoma 
MLP MultiLayer Perceptron 
MRI Magnetic Resonance Imaging 
MSD The Medical Segmentation Decathlon 
NIH The National Institutes of Health 
OAR Organ At Risk 
RNN Recurrent Neural Network 
ROC: Operating Characteristic Curve 
SCC Squamous Cell Carcinoma 
wAFROC FOM weighted Alternative Free Response Operating Characteristic Figure-Of-Merits 

B. Development of the analytical solution 

We have the following loss function from the assumption of a single-layer MLP network with the linear activation function, with m input features 
and n observations. 

J(w)=
1
2n
(
(Xw − y)T

(Xw − y)
)

(B.1)  

Where X ∈ Rn×m is the matrix of input features and observations. w ∈ Rm is the vector of training parameters, and y ∈ Rn is the vector of outputs for the 
n observations. 

Since one expects to find the vector w that minimizes equation (B.1), it is possible to derive it and equal to zero, as shown in equation (B.2). 
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dJ(w)
dw

=
1

2n
d

dw
(
(Xw − y)T

(Xw − y)
)
= 0 (B.2)  

d
dw
(
(Xw − y)T

(Xw − y)
)
= 0 (B.3) 

By applying the derivative of a product, we have the expression of equation (B.4). 
(

X
d

dw
(w)
)T

(Xw − y)+ (Xw − y)T X
d

dw
(w)= 0 (B.4)  

And solving the above expression leads to equation (B.6). 
(

d
dw

(w)
)T

XT(Xw − y)+
(
wT XT − yT)X

d
dw

(w)= 0 (B.5)  

(
d

dw
(w)
)T

XT Xw −

(
d

dw
(w)
)T

XT y+wT XT X
d

dw
(w) − yT X

d
dw

(w)= 0 (B.6) 

Note that, because of the dimensionality of vectors and matrices, each term of the equation is a scalar. Furthermore, the positive terms (additions) 
and negative terms (subtractions) are the transposed equivalents between the same signs. Therefore, these terms are equal (only apply for the 
transpose of a scalar). Then, equation (B.6) can be reduced to equation (B.7). 

2
(

d
dw

(w)
)T

XT Xw − 2
(

d
dw

(w)
)T

XT y= 0 (B.7) 

Thus, by clearing w, we arrive at equation (B.10). 
(

d
dw

(w)
)T (

2XT Xw − 2XT y
)
= 0 (B.8)  

2XT Xw − 2XT y = 0 (B.9)  

w=
(
XT X

)− 1XT y (B.10)  
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